Authors: Esplin ED, Hanson C, Wu S, Horning AM, Barapour N, Nevins SA, Jiang L, Contrepois K, Lee H, Guha TK, Hu Z, Laquindanum R, Mills MA, Chaib H, Chiu R, Jian R, Chan J, Ellenberger M, Becker WR, Bahmani B, Khan A, Michael B, Weimer AK, Esplin DG, Shen J, Lancaster S, Monte E, Karathanos TV, Ladabaum U, Longacre TA, Kundaje A, Curtis C, Greenleaf WJ, Ford JM, Snyder MP
Journal: Nature Cancer Pubmed: 39478120 DOI: 10.1038/s43018-024-00831-z
Atlas: Stanford University
Familial adenomatous polyposis (FAP) is a genetic disease causing hundreds of premalignant polyps in affected persons and is an ideal model to study transitions of early precancer states to colorectal cancer (CRC). We performed deep multiomic profiling of 93 samples, including normal mucosa, benign polyps and dysplastic polyps, from six persons with FAP. Transcriptomic, proteomic, metabolomic and lipidomic analyses revealed a dynamic choreography of thousands of molecular and cellular events that occur during precancerous transitions toward cancer formation. These involve processes such as cell proliferation, immune response, metabolic alterations (including amino acids and lipids), hormones and extracellular matrix proteins. Interestingly, activation of the arachidonic acid pathway was found to occur early in hyperplasia; this pathway is targeted by aspirin and other nonsteroidal anti-inflammatory drugs, a preventative treatment under investigation in persons with FAP. Overall, our results reveal key genomic, cellular and molecular events during the earliest steps in CRC formation and potential mechanisms of pharmaceutical prophylaxis.
Files | CRDC-GC/SB-CGC (dbGaP ) | Synapse (Open Access ) |
---|---|---|
Bulk RNA-seq Level 1 | 332 | 0 |
LC-MS/MS Level 1 | 0 | 480 |
LC-MS3 Level 1 | 0 | 479 |
Mass Spectrometry Level 3 | 0 | 28 |
Mass Spectrometry Level 4 | 0 | 28 |
Shotgun MS (lipidomics) Level 1 | 0 | 208 |